MRUGANK MILIND AKARTE

New York City https://www.linkedin.com/in/mrugank-akarte/ (917) 900-8603 mrugank.akarte@columbia.edu

PROFESSIONAL SUMMARY

Senior Machine Learning Engineer with 4+ years of experience bridging cutting-edge research and production-scale systems. Specialized in **distributed deep learning**, **graph neural networks**, **and large-scale recommendation systems**. Proven track record of adapting research techniques to real-world constraints, achieving training speedup through distributed optimization, and deploying novel architectures serving millions of users. Experience spans weak supervision learning, multi-level representation systems, and high-performance ML infrastructure.

Core Research Interests: Distributed ML Systems • Graph Neural Networks • Representation Learning • MLOps at Scale

TECHNICAL EXPERTISE

Deep Learning & Research:

• PyTorch • Tensorflow • Graph Neural Networks • Model Optimization

Distributed Systems:

• Ray (Multi-GPU/Multi-Node) • Kubernetes • Docker • Distributed Training • Data Parallelism • Pipeline Optimization

ML Infrastructure:

• Google Cloud Platform • Vertex AI • Kubeflow • TorchServe • MLOps • Model Serving • Real-time Inference

Programming & Data:

• Python • SQL • C++

RESEARCH & ENGINEERING EXPERIENCE

Macy's Technology
Senior Machine Learning Engineer- Product Recommendation Systems

New York City, USA Feb 2021-Present

Graph Neural Networks for Cross-Category Recommendations - Researched and implemented GNN-based "Complete the Look" system using a novel weak supervision approach, achieving 3-4% improvement in revenue per visit and average order value across furniture catalog

- **Research Methodology:** Conducted literature review of state-of-the-art recommendation systems, adapting Amazon's P-Companion architecture for cross-category compatibility prediction
- **Novel Training Strategy:** Designed innovative weak supervision framework combining collections metadata and co-purchase behavioral signals to address the absence of labeled compatibility data
- **Multi-level Architecture:** Built a hierarchical embedding system projecting product representations into category-aware compatibility space, enabling structured reasoning across product taxonomies
- **Production Architecture:** Engineered offline-online serving system implementing daily template updates and recommendation refresh cycles

Distributed Training Optimization with Ray

- Systems Research: Architected distributed training pipeline for a two-tower recommendation model across multi-node GPU clusters, achieving 2.7x speedup ($4hr \rightarrow 1.5hr$ on 4 GPUs)
- Data Pipeline Innovation: Implemented hierarchical data sharding strategy distributing GCS file reads across nodes and workers, optimizing both inter-node and intra-node data parallelism
- **Performance Analysis:** Conducted systematic bottleneck analysis and optimization, demonstrating super-linear scaling efficiency in distributed deep learning workloads

Automated Semantic Classification & Taxonomy Mapping

- **Research Problem:** Designed automated product-to-taxonomy mapping system replacing manual category assignment with individual product-level classification using Google Product Category (GPC) taxonomy
- **Embedding Architecture:** Developed feature-based product embedding system computing semantic similarity across 5,000+ GPC categories, achieving fine-grained automated classification at scale

- Semantic Understanding: Created representation learning framework that captures product-category compatibility relationships, enabling automated taxonomy assignment without manual rule engineering
- Business Impact: Deployed system improving return on ad spend (ROAS) and achieving a 10% year-over-year increase in average order value through enhanced product discoverability and targeting precision

MLOps Infrastructure & Research Support

- Platform Modernization: Led migration of 15+ ML pipelines from on-premises to Vertex AI, establishing standardized distributed training patterns for data science team
- Research Tooling: Developed comprehensive training and deployment framework using Kubeflow on GKE, enabling rapid experimentation and model iteration for data science researchers
- Innovation Projects: Conducted proof-of-concepts in parallel computing optimization (Ray), vector similarity search (ChromaDB), and real-time monitoring (Prometheus/Grafana)

DATA SCIENCE RESEARCH PROJECTS

Columbia University, Model Quantization using TensorflowLite (Dec 2020):

- Conducted systematic research on neural network compression techniques including post-training quantization, quantizationaware training, and weight pruning
- Achieved 4x model size reduction with minimal performance degradation, contributing to efficient model deployment research

Data Science Internships

Nokia Bell Labs (Jun-Aug 2020):

- Developed novel CNN-LSTM autoencoder architecture for multivariate time series anomaly detection, recipient of Bell Labs Innovation Award

Ralph Lauren Capstone (Sep-Dec 2020):

- Built return propensity prediction system using AWS SageMaker and advanced feature engineering

Ellicium Solutions (Jan-May 2018):

- Researched imbalanced learning techniques for customer retention in insurance domain

EDUCATION

Columbia University New York City, NY Master of Science, Data Science

Dec 2020

Relevant Courses: Machine Learning, Exploratory Data Analysis and Visualization, Probability Theory and Statistics, Statistical Inference, Algorithms.

Vishwakarma Institute of Technology **Bachelor of Technology**

Pune, India May 2018

Bachelor of Technology in Production Engineering, GPA: 9.44/10.

RECOGNITIONS

Publications: "Cost-Optimal Maintenance Strategies Using Machine Learning" - ORSI Conference Awards: Nokia Bell Labs Summer Intern Innovation Award for Outstanding Research Contribution

Technical Leadership: Mentored 5+ data scientists in distributed ML deployment and MLOps best practices